tensor(206.3920, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 0, loss 206.3920440673828
tensor(16.8376, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 1, loss 16.83762550354004
tensor(1.3762, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 2, loss 1.376238465309143
tensor(0.1151, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 3, loss 0.11507002264261246
tensor(0.0122, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 4, loss 0.012168784625828266
tensor(0.0037, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 5, loss 0.0037444557528942823
tensor(0.0030, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 6, loss 0.003026577876880765
tensor(0.0029, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 7, loss 0.002937624929472804
tensor(0.0029, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 8, loss 0.0029003347735852003
tensor(0.0029, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 9, loss 0.0028675799258053303
tensor(0.0028, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 10, loss 0.002835528226569295
tensor(0.0028, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 11, loss 0.0028038672171533108
tensor(0.0028, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 12, loss 0.0027725582476705313
tensor(0.0027, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 13, loss 0.0027415987569838762
tensor(0.0027, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 14, loss 0.002710981061682105
tensor(0.0027, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 15, loss 0.002680701669305563
tensor(0.0027, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 16, loss 0.002650765236467123
tensor(0.0026, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 17, loss 0.0026211619842797518
tensor(0.0026, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 18, loss 0.002591898199170828
tensor(0.0026, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 19, loss 0.002562958048656583
tensor(0.0025, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 20, loss 0.00253433920443058
tensor(0.0025, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 21, loss 0.0025060418993234634
tensor(0.0025, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 22, loss 0.0024780421517789364
tensor(0.0025, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 23, loss 0.00245039165019989
tensor(0.0024, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 24, loss 0.0024230300914496183
tensor(0.0024, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 25, loss 0.002395971678197384
tensor(0.0024, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 26, loss 0.002369208261370659
tensor(0.0023, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 27, loss 0.0023427503183484077
tensor(0.0023, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 28, loss 0.0023165924940258265
tensor(0.0023, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 29, loss 0.0022907210513949394
tensor(0.0023, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 30, loss 0.002265149261802435
tensor(0.0022, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 31, loss 0.0022398445289582014
tensor(0.0022, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 32, loss 0.0022148259449750185
tensor(0.0022, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 33, loss 0.0021900965366512537
tensor(0.0022, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 34, loss 0.002165642101317644
tensor(0.0021, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 35, loss 0.0021414649672806263
tensor(0.0021, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 36, loss 0.002117547672241926
tensor(0.0021, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 37, loss 0.002093919087201357
tensor(0.0021, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 38, loss 0.0020705123897641897
tensor(0.0020, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 39, loss 0.002047403249889612
tensor(0.0020, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 40, loss 0.0020245348569005728
tensor(0.0020, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 41, loss 0.0020019125659018755
tensor(0.0020, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 42, loss 0.0019795664120465517
tensor(0.0020, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 43, loss 0.0019574754405766726
tensor(0.0019, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 44, loss 0.0019356186967343092
tensor(0.0019, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 45, loss 0.001913992571644485
tensor(0.0019, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 46, loss 0.001892620581202209
tensor(0.0019, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 47, loss 0.0018714822363108397
tensor(0.0019, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 48, loss 0.0018505867337808013
tensor(0.0018, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 49, loss 0.0018299183575436473
tensor(0.0018, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 50, loss 0.0018094833940267563
tensor(0.0018, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 51, loss 0.0017892859177663922
tensor(0.0018, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 52, loss 0.0017693080008029938
tensor(0.0017, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 53, loss 0.0017495357897132635
tensor(0.0017, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 54, loss 0.0017300068866461515
tensor(0.0017, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 55, loss 0.001710680779069662
tensor(0.0017, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 56, loss 0.0016915786545723677
tensor(0.0017, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 57, loss 0.001672690617851913
tensor(0.0017, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 58, loss 0.0016540165524929762
tensor(0.0016, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 59, loss 0.0016355657717213035
tensor(0.0016, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 60, loss 0.0016172955511137843
tensor(0.0016, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 61, loss 0.001599231269210577
tensor(0.0016, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 62, loss 0.0015813630307093263
tensor(0.0016, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 63, loss 0.0015636991010978818
tensor(0.0015, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 64, loss 0.0015462442534044385
tensor(0.0015, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 65, loss 0.0015289830043911934
tensor(0.0015, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 66, loss 0.0015118996379896998
tensor(0.0015, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 67, loss 0.0014950240729376674
tensor(0.0015, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 68, loss 0.001478330697864294
tensor(0.0015, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 69, loss 0.0014618198620155454
tensor(0.0014, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 70, loss 0.0014455093769356608
tensor(0.0014, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 71, loss 0.0014293610583990812
tensor(0.0014, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 72, loss 0.0014133971417322755
tensor(0.0014, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 73, loss 0.0013976226327940822
tensor(0.0014, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 74, loss 0.001382010756060481
tensor(0.0014, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 75, loss 0.0013665799051523209
tensor(0.0014, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 76, loss 0.0013513071462512016
tensor(0.0013, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 77, loss 0.0013362137833610177
tensor(0.0013, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 78, loss 0.001321309246122837
tensor(0.0013, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 79, loss 0.0013065504608675838
tensor(0.0013, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 80, loss 0.0012919578002765775
tensor(0.0013, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 81, loss 0.00127753138076514
tensor(0.0013, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 82, loss 0.0012632724829018116
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 83, loss 0.0012491564266383648
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 84, loss 0.0012352198828011751
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 85, loss 0.0012214111629873514
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 86, loss 0.0012077799765393138
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 87, loss 0.0011942884884774685
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 88, loss 0.001180959166958928
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 89, loss 0.0011677742004394531
tensor(0.0012, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 90, loss 0.0011547371977940202
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 91, loss 0.0011418408248573542
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 92, loss 0.0011290920665487647
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 93, loss 0.0011164796305820346
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 94, loss 0.0011040170211344957
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 95, loss 0.0010916816536337137
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 96, loss 0.001079498790204525
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 97, loss 0.0010674381628632545
tensor(0.0011, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 98, loss 0.0010555178159847856
tensor(0.0010, device='cuda:0', grad_fn=<MseLossBackward>)
epoch 99, loss 0.0010437151649966836
댓글 없음:
댓글 쓰기